Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relationship between the photosynthetic activity and the performance of Cakile maritima after long‐term salt treatment

Identifieur interne : 006250 ( Main/Exploration ); précédent : 006249; suivant : 006251

Relationship between the photosynthetic activity and the performance of Cakile maritima after long‐term salt treatment

Auteurs : Ahmed Debez [Tunisie, Allemagne] ; Hans-Werner Koyro [Allemagne] ; Claude Grignon [France] ; Chedly Abdelly [Tunisie] ; Bernhard Huchzermeyer [Allemagne]

Source :

RBID : ISTEX:D75EF64AA7DDC3C092561E0ADE75775B14217285

Descripteurs français

English descriptors

Abstract

Cakile maritima is a halophyte with potential for ecological, economical and medicinal uses. We address here the impact of salinity on its growth, photosynthesis and seed quality. Whole plant growth rate and shoot development were stimulated at moderate salinity (100–200 mM NaCl) and inhibited at higher salt concentrations. Although diminished in the presence of salt, potassium and calcium uptake per unit of root biomass was maintained at relatively high value, while nutrient‐use efficiency (NUE) was improved in salt‐treated plants. Chl and carotenoid concentrations decreased at extreme salinities, but anthocyanin concentration continuously grew with salinity. Net photosynthetic rate (A), stomatal conductance, maximum quantum efficiency of PSII and quantum yield were stimulated in the 100–200 mM NaCl range. Higher salinity adversely affected gas exchange and changed PSII functional characteristics, resulting in a reduction of A per leaf area unit. This phenomenon was associated with increased non‐photochemical quenching. Harvest index, silique number and seeds per fruit valve were maximal at 100 mM NaCl. Despite the decreasing salt accumulation gradient from the vegetative to the reproductive organs, high salinities were detrimental for the seed viability and increased the proportion of empty siliques. Overall, the salt‐induced changes in the plant photosynthetic activity resulted into analogous responses at the vegetative and reproductive stages. The enhancement of NUE, the absence of pigment degradation, the reduction of water loss and the concomitant PSII protection from photodamage through thermal dissipation of excess excitation significantly accounted for Cakile survival capacity at high salinity.

Url:
DOI: 10.1111/j.1399-3054.2008.01086.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relationship between the photosynthetic activity and the performance of Cakile maritima after long‐term salt treatment</title>
<author>
<name sortKey="Debez, Ahmed" sort="Debez, Ahmed" uniqKey="Debez A" first="Ahmed" last="Debez">Ahmed Debez</name>
</author>
<author>
<name sortKey="Koyro, Hans Erner" sort="Koyro, Hans Erner" uniqKey="Koyro H" first="Hans-Werner" last="Koyro">Hans-Werner Koyro</name>
</author>
<author>
<name sortKey="Grignon, Claude" sort="Grignon, Claude" uniqKey="Grignon C" first="Claude" last="Grignon">Claude Grignon</name>
</author>
<author>
<name sortKey="Abdelly, Chedly" sort="Abdelly, Chedly" uniqKey="Abdelly C" first="Chedly" last="Abdelly">Chedly Abdelly</name>
</author>
<author>
<name sortKey="Huchzermeyer, Bernhard" sort="Huchzermeyer, Bernhard" uniqKey="Huchzermeyer B" first="Bernhard" last="Huchzermeyer">Bernhard Huchzermeyer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D75EF64AA7DDC3C092561E0ADE75775B14217285</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1111/j.1399-3054.2008.01086.x</idno>
<idno type="url">https://api.istex.fr/document/D75EF64AA7DDC3C092561E0ADE75775B14217285/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006A83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006A83</idno>
<idno type="wicri:Area/Istex/Curation">006A83</idno>
<idno type="wicri:Area/Istex/Checkpoint">002520</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002520</idno>
<idno type="wicri:doubleKey">0031-9317:2008:Debez A:relationship:between:the</idno>
<idno type="wicri:Area/Main/Merge">006333</idno>
<idno type="wicri:Area/Main/Curation">006250</idno>
<idno type="wicri:Area/Main/Exploration">006250</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Relationship between the photosynthetic activity and the performance of
<hi rend="italic">Cakile maritima</hi>
after long‐term salt treatment</title>
<author>
<name sortKey="Debez, Ahmed" sort="Debez, Ahmed" uniqKey="Debez A" first="Ahmed" last="Debez">Ahmed Debez</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire d’Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologie à la Technopole de Borj‐Cedria, BP 901, Hammam‐Lif 2050</wicri:regionArea>
<wicri:noRegion>Hammam‐Lif 2050</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, D‐30419 Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Koyro, Hans Erner" sort="Koyro, Hans Erner" uniqKey="Koyro H" first="Hans-Werner" last="Koyro">Hans-Werner Koyro</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Pflanzenökologie, Justus Liebig‐Universität Gießen, Heinrich‐Buff‐Ring 26‐32, D‐35392 Gießen</wicri:regionArea>
<wicri:noRegion>35392 Gießen</wicri:noRegion>
<wicri:noRegion>D‐35392 Gießen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grignon, Claude" sort="Grignon, Claude" uniqKey="Grignon C" first="Claude" last="Grignon">Claude Grignon</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Biochimie and Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, ENSA‐M/INRA 34060 Montpellier</wicri:regionArea>
<wicri:noRegion>34060 Montpellier</wicri:noRegion>
<wicri:noRegion>ENSA‐M/INRA 34060 Montpellier</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdelly, Chedly" sort="Abdelly, Chedly" uniqKey="Abdelly C" first="Chedly" last="Abdelly">Chedly Abdelly</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire d’Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologie à la Technopole de Borj‐Cedria, BP 901, Hammam‐Lif 2050</wicri:regionArea>
<wicri:noRegion>Hammam‐Lif 2050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huchzermeyer, Bernhard" sort="Huchzermeyer, Bernhard" uniqKey="Huchzermeyer B" first="Bernhard" last="Huchzermeyer">Bernhard Huchzermeyer</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, D‐30419 Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Physiologia Plantarum</title>
<title level="j" type="alt">PHYSIOLOGIA PLANTARUM</title>
<idno type="ISSN">0031-9317</idno>
<idno type="eISSN">1399-3054</idno>
<imprint>
<biblScope unit="vol">133</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="373">373</biblScope>
<biblScope unit="page" to="385">385</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-06">2008-06</date>
</imprint>
<idno type="ISSN">0031-9317</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0031-9317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abaxial stomatal densities</term>
<term>Adaptive significance</term>
<term>Adverse effect</term>
<term>Anthocyanin concentrations</term>
<term>Anthocyanins</term>
<term>Assimilation rate</term>
<term>Biomass</term>
<term>Biomass production</term>
<term>Cakile</term>
<term>Cakile maritima</term>
<term>Carbon isotope discrimination</term>
<term>Carotenoid</term>
<term>Chlorophyll</term>
<term>Chlorophyll fluorescence</term>
<term>Concomitant increase</term>
<term>Control plants</term>
<term>Control values</term>
<term>Corresponding author</term>
<term>Crithmum maritimum</term>
<term>Different letters</term>
<term>Empty valves</term>
<term>Excess energy</term>
<term>Excess light energy</term>
<term>Exchange parameters</term>
<term>Excitation energy</term>
<term>External salinity</term>
<term>External salt concentration</term>
<term>Fluorescence parameters</term>
<term>Fpsii</term>
<term>Fruit valve</term>
<term>Fruit valves</term>
<term>Funct plant biol</term>
<term>Genus cakile</term>
<term>Germination capacity</term>
<term>Growth activity</term>
<term>Growth conditions</term>
<term>Growth rate</term>
<term>Halophyte</term>
<term>Halophyte cakile maritima</term>
<term>Harvest index</term>
<term>Height root length</term>
<term>High salinities</term>
<term>High salinity</term>
<term>Higher salinities</term>
<term>Higher salt concentrations</term>
<term>Highest salinity</term>
<term>Hordeum maritimum</term>
<term>Individual leaf surface area</term>
<term>Individual seed mass</term>
<term>Leaf</term>
<term>Leaf area</term>
<term>Leaf area unit</term>
<term>Leaf dehydration</term>
<term>Leaf initiation</term>
<term>Leaf number</term>
<term>Leaf surface area</term>
<term>Leaf weight fraction</term>
<term>Lesser extent</term>
<term>London hunt</term>
<term>Lower valves</term>
<term>Maritima</term>
<term>Maximum quantum efficiency</term>
<term>Mgwhole plant</term>
<term>Mild salinity</term>
<term>Mineral nutrition</term>
<term>Mmol</term>
<term>Moderate salinities</term>
<term>Moderate salinity</term>
<term>Nacl</term>
<term>Nacl range</term>
<term>Nacl stress</term>
<term>Optimal salinity</term>
<term>Parameter</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic activity</term>
<term>Photosynthetic parameters</term>
<term>Photosynthetic performance</term>
<term>Photosynthetic rate</term>
<term>Photosynthetic responses</term>
<term>Physiol</term>
<term>Physiol plant</term>
<term>Physiological responses</term>
<term>Plant ability</term>
<term>Plant growth</term>
<term>Plant nutr soil</term>
<term>Plant nutrition</term>
<term>Plant physiol</term>
<term>Plant physiol biochem</term>
<term>Plant seeds</term>
<term>Plant survival</term>
<term>Polyphenol content</term>
<term>Psii</term>
<term>Psii integrity</term>
<term>Psii photochemistry</term>
<term>Reaction centres</term>
<term>Reactive oxygen species</term>
<term>Relative growth rate</term>
<term>Reproductive</term>
<term>Reproductive stages</term>
<term>Root length</term>
<term>Ruppia maritima</term>
<term>Salinity</term>
<term>Salinity level</term>
<term>Salinity range</term>
<term>Salt concentration</term>
<term>Salt exposure</term>
<term>Salt response</term>
<term>Salt stress</term>
<term>Salt treatment duration</term>
<term>Salt treatments</term>
<term>Salvadora persica</term>
<term>Seed mass</term>
<term>Seed viability</term>
<term>Significant increase</term>
<term>Silique</term>
<term>Silique valves</term>
<term>Spad values</term>
<term>Specific leaf area</term>
<term>Stomatal</term>
<term>Stomatal conductance</term>
<term>Stomatal density</term>
<term>Supplementary material</term>
<term>Supraoptimal salinities</term>
<term>Total valves</term>
<term>Transpiration rate</term>
<term>Unit leaf rate</term>
<term>Upper seeds</term>
<term>Upper valves</term>
<term>Uptake rate</term>
<term>Valve</term>
<term>Vegetative</term>
<term>Whole plant biomass</term>
<term>Xanthophyll cycle</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abaxial stomatal densities</term>
<term>Adaptive significance</term>
<term>Adverse effect</term>
<term>Anthocyanin concentrations</term>
<term>Anthocyanins</term>
<term>Assimilation rate</term>
<term>Biomass</term>
<term>Biomass production</term>
<term>Cakile</term>
<term>Cakile maritima</term>
<term>Carbon isotope discrimination</term>
<term>Carotenoid</term>
<term>Chlorophyll</term>
<term>Chlorophyll fluorescence</term>
<term>Concomitant increase</term>
<term>Control plants</term>
<term>Control values</term>
<term>Corresponding author</term>
<term>Crithmum maritimum</term>
<term>Different letters</term>
<term>Empty valves</term>
<term>Excess energy</term>
<term>Excess light energy</term>
<term>Exchange parameters</term>
<term>Excitation energy</term>
<term>External salinity</term>
<term>External salt concentration</term>
<term>Fluorescence parameters</term>
<term>Fpsii</term>
<term>Fruit valve</term>
<term>Fruit valves</term>
<term>Funct plant biol</term>
<term>Genus cakile</term>
<term>Germination capacity</term>
<term>Growth activity</term>
<term>Growth conditions</term>
<term>Growth rate</term>
<term>Halophyte</term>
<term>Halophyte cakile maritima</term>
<term>Harvest index</term>
<term>Height root length</term>
<term>High salinities</term>
<term>High salinity</term>
<term>Higher salinities</term>
<term>Higher salt concentrations</term>
<term>Highest salinity</term>
<term>Hordeum maritimum</term>
<term>Individual leaf surface area</term>
<term>Individual seed mass</term>
<term>Leaf</term>
<term>Leaf area</term>
<term>Leaf area unit</term>
<term>Leaf dehydration</term>
<term>Leaf initiation</term>
<term>Leaf number</term>
<term>Leaf surface area</term>
<term>Leaf weight fraction</term>
<term>Lesser extent</term>
<term>London hunt</term>
<term>Lower valves</term>
<term>Maritima</term>
<term>Maximum quantum efficiency</term>
<term>Mgwhole plant</term>
<term>Mild salinity</term>
<term>Mineral nutrition</term>
<term>Mmol</term>
<term>Moderate salinities</term>
<term>Moderate salinity</term>
<term>Nacl</term>
<term>Nacl range</term>
<term>Nacl stress</term>
<term>Optimal salinity</term>
<term>Parameter</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic activity</term>
<term>Photosynthetic parameters</term>
<term>Photosynthetic performance</term>
<term>Photosynthetic rate</term>
<term>Photosynthetic responses</term>
<term>Physiol</term>
<term>Physiol plant</term>
<term>Physiological responses</term>
<term>Plant ability</term>
<term>Plant growth</term>
<term>Plant nutr soil</term>
<term>Plant nutrition</term>
<term>Plant physiol</term>
<term>Plant physiol biochem</term>
<term>Plant seeds</term>
<term>Plant survival</term>
<term>Polyphenol content</term>
<term>Psii</term>
<term>Psii integrity</term>
<term>Psii photochemistry</term>
<term>Reaction centres</term>
<term>Reactive oxygen species</term>
<term>Relative growth rate</term>
<term>Reproductive</term>
<term>Reproductive stages</term>
<term>Root length</term>
<term>Ruppia maritima</term>
<term>Salinity</term>
<term>Salinity level</term>
<term>Salinity range</term>
<term>Salt concentration</term>
<term>Salt exposure</term>
<term>Salt response</term>
<term>Salt stress</term>
<term>Salt treatment duration</term>
<term>Salt treatments</term>
<term>Salvadora persica</term>
<term>Seed mass</term>
<term>Seed viability</term>
<term>Significant increase</term>
<term>Silique</term>
<term>Silique valves</term>
<term>Spad values</term>
<term>Specific leaf area</term>
<term>Stomatal</term>
<term>Stomatal conductance</term>
<term>Stomatal density</term>
<term>Supplementary material</term>
<term>Supraoptimal salinities</term>
<term>Total valves</term>
<term>Transpiration rate</term>
<term>Unit leaf rate</term>
<term>Upper seeds</term>
<term>Upper valves</term>
<term>Uptake rate</term>
<term>Valve</term>
<term>Vegetative</term>
<term>Whole plant biomass</term>
<term>Xanthophyll cycle</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomasse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cakile maritima is a halophyte with potential for ecological, economical and medicinal uses. We address here the impact of salinity on its growth, photosynthesis and seed quality. Whole plant growth rate and shoot development were stimulated at moderate salinity (100–200 mM NaCl) and inhibited at higher salt concentrations. Although diminished in the presence of salt, potassium and calcium uptake per unit of root biomass was maintained at relatively high value, while nutrient‐use efficiency (NUE) was improved in salt‐treated plants. Chl and carotenoid concentrations decreased at extreme salinities, but anthocyanin concentration continuously grew with salinity. Net photosynthetic rate (A), stomatal conductance, maximum quantum efficiency of PSII and quantum yield were stimulated in the 100–200 mM NaCl range. Higher salinity adversely affected gas exchange and changed PSII functional characteristics, resulting in a reduction of A per leaf area unit. This phenomenon was associated with increased non‐photochemical quenching. Harvest index, silique number and seeds per fruit valve were maximal at 100 mM NaCl. Despite the decreasing salt accumulation gradient from the vegetative to the reproductive organs, high salinities were detrimental for the seed viability and increased the proportion of empty siliques. Overall, the salt‐induced changes in the plant photosynthetic activity resulted into analogous responses at the vegetative and reproductive stages. The enhancement of NUE, the absence of pigment degradation, the reduction of water loss and the concomitant PSII protection from photodamage through thermal dissipation of excess excitation significantly accounted for Cakile survival capacity at high salinity.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>France</li>
<li>Tunisie</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Hanovre</li>
</settlement>
</list>
<tree>
<country name="Tunisie">
<noRegion>
<name sortKey="Debez, Ahmed" sort="Debez, Ahmed" uniqKey="Debez A" first="Ahmed" last="Debez">Ahmed Debez</name>
</noRegion>
<name sortKey="Abdelly, Chedly" sort="Abdelly, Chedly" uniqKey="Abdelly C" first="Chedly" last="Abdelly">Chedly Abdelly</name>
</country>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Debez, Ahmed" sort="Debez, Ahmed" uniqKey="Debez A" first="Ahmed" last="Debez">Ahmed Debez</name>
</region>
<name sortKey="Huchzermeyer, Bernhard" sort="Huchzermeyer, Bernhard" uniqKey="Huchzermeyer B" first="Bernhard" last="Huchzermeyer">Bernhard Huchzermeyer</name>
<name sortKey="Koyro, Hans Erner" sort="Koyro, Hans Erner" uniqKey="Koyro H" first="Hans-Werner" last="Koyro">Hans-Werner Koyro</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Grignon, Claude" sort="Grignon, Claude" uniqKey="Grignon C" first="Claude" last="Grignon">Claude Grignon</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006250 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006250 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:D75EF64AA7DDC3C092561E0ADE75775B14217285
   |texte=   Relationship between the photosynthetic activity and the performance of Cakile maritima after long‐term salt treatment
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022